Arc and point elasticity

The following explanations refer to the **price elasticity of demand** (e).

1 Formulae (Q = Quantity; P = Price; P1 and Q1 are initial values, P2 and Q2 are final values.)

Arc elasticity	Point elasticity
$e = \frac{\Delta Q}{Q1} : \frac{\Delta P}{P1} = \frac{\Delta Q}{\Delta P} * \frac{P1}{Q1} // \Delta Q = Q2 - Q1 / \Delta P = P2 - P1$	$e = \frac{dQ}{Q} : \frac{dP}{P} = \frac{dQ}{dP} * \frac{P}{Q}$ / $\frac{dQ}{dP} = Q'$ (1. derivation)

2 Example of a linear demand function: Q = 12 - 3P

3 Example 1 of a non-linear demand function: in general

4 Example 2 of a non-linear demand function: $Q = 36 - P^2$

Arc elasticity P falls from 5 to 3	Point elasticity e at P = 5
$P1 = 5 \rightarrow Q1 = 36 - P^2 = 36 - 25 = 11$	$Q = 36 - P^2 = 36 - 25 = 11$
$P2 = 3 \rightarrow Q2 = 36 - P^2 = 36 - 9 = 27$	Q' = - 2P
P1 = 5 / P2 = 3 // Q1 = 11 / Q2 = 27	P = 5 / Q = 11 / Q' = - 2P
$e = \frac{\Delta Q}{\Delta P} * \frac{P1}{Q1} = \frac{+16}{-2} * \frac{5}{11} = \frac{80}{-22} = -3.64$	$e = \frac{dQ}{dP} * \frac{P}{Q} = -2P * \frac{5}{11} = -10 * \frac{5}{11} = -\frac{50}{11} = -4.55$

Remarks:

- In the case of a **non-linear** demand function, the two elasticities lead to **different** results.
- Since the price elasticity of demand is usually negative, the minus sign is often omitted.