1. How do the multiplier and the accelerator interact?

Multiplier

Accelerator

Change in planned AD
(for example I)

Change in Y

AD Aggregate demand
I Investment

Y National income / Output
2 How does the *multiplier* work?

21 A numerical example

<table>
<thead>
<tr>
<th>Round</th>
<th>Change in Y</th>
<th>Change in C (MPC = 0.7)</th>
<th>Change in S (MPS = 0.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (ΔI=1000)</td>
<td>1000</td>
<td>700</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>700</td>
<td>490</td>
<td>210</td>
</tr>
<tr>
<td>3</td>
<td>490</td>
<td>343</td>
<td>147</td>
</tr>
<tr>
<td>4</td>
<td>343</td>
<td>240</td>
<td>103</td>
</tr>
<tr>
<td>5</td>
<td>240</td>
<td>168</td>
<td>72</td>
</tr>
<tr>
<td>all future rounds</td>
<td>560</td>
<td>392</td>
<td>168</td>
</tr>
<tr>
<td>sum</td>
<td>3'333</td>
<td>2'333</td>
<td>1'000</td>
</tr>
</tbody>
</table>

Multiplier (K):

\[
K = \frac{1}{1-\text{MPC}} \quad \text{or} \quad K = \frac{1}{\text{MPS}}
\]

Multiplier with taxes and foreign sector:

\[
K = \frac{1}{\text{MPS} + \text{MPT} + \text{MPM}}
\]

\text{MPT} = \text{Marginal propensity to tax}
\text{MPM} = \text{Marginal propensity to import}

I = Investment

\[I = \text{Investment}\]

\[\text{Y = Output/National income}\]

\[\text{C = Consumption}\]

\[\text{MPC = Marginal propensity to consume}\]

\[\text{MPS = Marginal propensity to save}\]

22 The multiplier, graphically

The multiplier is calculated as:

\[\text{Multiplier} = \frac{\text{Change in Y}}{\text{Change in AD}}\]

planned AD

(without foreign trade)

\[\text{AD} = \text{Y}\]

\[\text{AD1}\]

\[\text{AD2}\]

\[\Delta \text{in AD}\]

\[45^\circ\]

\[\text{Change in Y}\]

\[\text{Y1}\]

\[\text{Y2}\]

\[\text{Y}\]
3 How does the *accelerator* work? A numerical example

<table>
<thead>
<tr>
<th>Year</th>
<th>(Y (= Output))</th>
<th>Stock of capital ①</th>
<th>Net investment ②</th>
<th>Depreciation ③</th>
<th>Gross investment ④</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>(100)</td>
<td>(200)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>200</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>240</td>
<td>40</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>140</td>
<td>280</td>
<td>40</td>
<td>12</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>160</td>
<td>320</td>
<td>40</td>
<td>14</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
<td>320</td>
<td>0</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

① Capital - output ratio = 2 : 1
② Net investment = 2 * change in output (in comparison to the previous year)
③ Depreciation = 0.05 * Stock of capital (of the previous year)
④ Gross investment = Net investment + depreciation

Remarks

- It can be seen that a (relatively) small increase in \(Y \) (from 100 to 120) causes a big increase in gross investment (from 10 to 50). If, however, \(Y \) stagnates (160/160), gross investment is falling a lot (from 54 to 16). Thus, the accelerator is reinforcing the effects of the multiplier, upwards as well as downwards.

- This reinforcing effect is due to the fact that there is a stock of capital which can be used to produce \(Y \) in the future. If you take only into account net investment, this type of investment may be proportionate to the change in \(Y \). In our case: Net investment = 2 * change in \(Y \). The same can be observed if you look at the effect of changes in \(Y \) on stocks of goods.